
Journal of Mathematical Chemistry Vol. 32, No. 2, August 2002 (© 2002)

Shell partition and metric semispaces:
Minkowski norms, root scalar products, distances

and cosines of arbitrary order
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Vector semispaces are studied from a realistic way with the intention to define a natural
metric, adapted to their peculiar structure, which reside on the essential positive definiteness
of their elements. From this point of view,Minkowski norms allow classifying semispaces
in shells, that is: subsets where all the vector elements possess the same norm values. Shell
structure appears to be a possible disjointpartition of any semispace and so shells become
equivalence classes Then, theunit shell appears to be the core of the semispace homothetic
construction as well as the origin of the semispace metrics.Minkowski or root scalar products
permit to connect two or more semispace elements and conduct towards generalized defini-
tionsof Pth order root distances and cosines. Finally, the unit shell of a given semispace, in
company of both Boolean tagged sets, inward matrix products and with the aid of the matrix
signatures as well, it is seen as the seed to construct any arbitrary element of the semispace
connected vector space. Finite and infinite dimensional vector spaces application examples are
provided along the work discussion.
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1. Introduction

1.1. Vector semispaces

Vector semispaces, V (R+), have been described several years ago [1] within a
framework, where the main objective has taken a double path. First, in semispace study
was followed the direction providing with adequate mathematical tools the framework
of quantum similarity (QS) and, at the same time, the second research track was also
chosen for the sake to find out how to properly describe the associated background of
quantum density functions sets. The main basic original idea was to construct sets, re-
lated to parent vector spaces defined over the real field1, V (R), but with all elements

1 Parent vector spaces defined over thecomplex field can be also studied within the same context. However,
such alternative and general framework would complicate the basic notions which will be developed here
and, thus, only the simpler real field case will be taken into account.
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being positive definite. In this fashion, semispaces can describe a vector set whose ele-
ments are made of measures, like the collections of QS measures, forming matrix arrays,
and can end up into the sets of discrete or continuous probability distributions.

In order to achieve this goal, semispaces are made as usual vector spaces, but are
restrictedly defined over the positive definite real fieldR+ only. The main axiomatic
characteristic of semispaces consists into that the vector addition is constructed with an
Abeliansemigroup structure [2]2, instead of the usual Abelian additive group associated
to vector spaces.

Moreover, if time can be associated to some structure, as a recent study points
out [3], then the time structure elements will definitively belong to a semispace con-
struct.

1.2. Tagged and quantum object sets

Several discussion studies have been performed on vector semispaces and their
connection with QSmeasures andmatrices [4,5]. Of the two mentioned concepts, the
last one is obviously linked with vector semispace features, as QS matrices are symmet-
ric and bearing positive definite elements, according to the fact that such elements are
the result of QS measures, usually computed between pairs ofquantum object descrip-
tors defined in turn by computationally connecting the appropriate quantum state density
functions.

Besides all of these considerations, vector semispace subset elements are perfect
candidates to naturally become thetag set part of tagged sets [5,6] constructions. Such
tagged sets are defined as the Cartesian product:Z = Q×T of a set of object entities or
object set, �, which can be formed by any collection of arbitrary elements, and another
set, thetag set, T , whose elements contain known information about the objects. Tags
are usually chosen as, or can alternatively be transformed into, bit strings, constituting
Boolean tagged sets [6]. Tags can be also formed by positive definiteN-tuples or func-
tions. Then, in any of these cases the ordered pairs:(ω; t) ∈ Z, with ω ∈ � ∧ t ∈ T ,
constitute the generic elements of any tagged set.

Quantum object sets are a convenient and useful example of tagged sets, as they are
defined as being formed by submicroscopic quantum systems chosen as object entities,
which possess attached, by quantum mechanical postulate construction,quantum density
state functions [7]. Such probability functions, which depend on the quantum object
particle coordinates, act in this case as positive definite tags and, thus, form the tag set
part [6,8] of the quantum object set.Discrete quantum object sets are constructed as
a mathematical elaboration of quantum object sets [3,9,10], as the object entities are the

2 Semigroups are groups without reciprocal elements. Additive semigroups like the ones employed in order
to construct semispaces, lack of negative elements and, thus, differences, negative vectors and scalars are
not present.
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same as in the former quantum object set definition, but tags become the columns of
a QS matrix or a manipulation of their positive definite elements in form of QS indices.

Despite of all this developed work,metric vector semispaces structure and tools
have not been deeply discussed so far, though. Thus, it seems worthwhile at this mo-
ment of the theoretical development of QS to present and to discuss the possible way to
describe anad hoc metric in semispaces. This will be the main purpose of the present
study.

2. Vector spaces as Boolean tagged sets

2.1. Signatures and vector spaces as Boolean tagged sets

The elements of a givenN-dimensional vector semispace can be employed not
only as tags in a tagged set assembly, as discussed in the introduction above, but they
can be also contemplated as object entities, in order to construct any element associated
to a parentN-dimensional vector space.

Indeed, in the case where supposedly the vector space is considered defined over
the real set, one can use the semispace elements as the object set part, while as the
tag set part one can employ the possible 2N vector signatures [11], �N , made of
N-dimensional vectors using the combinations with repetition of the binary elements
in the set:{−1;+1}. Equivalently a bit source:{0,1}, can be envisaged for signature
build up, but in this bit-like case one has to admit the adequate relationship between bits
and equivalent sign conventions.

Thus, vectors can be associated to the following construction rule as tagged set
elements:

∀x ∈ VN(R): ∃z ∈ VN
(
R+
) ∧ ∃σ ∈ �N → x = (z;σ ).

So, this is equivalent to consider that one can construct vector spaces from vector semi-
spaces by using the Cartesian product of such sets with the signature set:VN(R) =
VN(R+)×�N [12].

2.2. Inward matrix products and sign reversal

Keeping in mind vector spaces can be assembled from vector semispaces, as collec-
tions of tagged set elements, then it can be also said that anyN-dimensional vector space
element can be alternatively built up just by using theinward matrix product [11–13] of
aN-dimensional semispace element by the corresponding signature vector. The semi-
space elements themselves can be considered bearing unity signature, a vector whose
elements are made by the unity vector:1 = {1I = 1}3.

However, one must keep in mind that even if 2N signature elements can be made
from the bit-like form of signature sets, in practice half of the possible signatures are

3 See appendix A, for more details on inward products.



204 R. Carbó-Dorca / Shell partition and metric semispaces

symmetrical to the other half, simplyreversing or exchanging one of the needed signs
by the other. For example, to the unity signature above the sign reversal provides the
signature:−1 = {−1I = −1}.

2.3. Vector signature and nullity

Constructed in this manner, that is: employing semispace elements as object en-
tities and signatures as tags, vector spaces can be considered sets bearing a Boolean
tagged set structure. Generalization of this construction to matrix or hypermatrix spaces
is straightforward [11,13]. The interesting consequence of this construct is resumed tak-
ing into account the importance which acquires the semispace structure, being the core
of classical vector spaces building.

However, such simple structure rules will not take care of the possible existence of
vectors with null elements. This is so, in the case that semispaces are made of strictly
positive definite elements, involvingR+ without taking into account the zero, the neutral
element in addition. The construction of canonical basis sets will not be possible without
considering the possibility of null elements within space vectors, although it is preferable
to do not include this feature in semispaces. As a consequence of the zero exclusion, the
vector space elements, made as discussed of semispace vectors and signatures do not
reproduce all the possible vectors or coordinates.

The procedure to overcome this problem does not substantially change the previous
tagged set structure of vector spaces. Indeed, there is only necessary to modify the
signature tags by choosing one of two alternative but equivalent ways.

2.4. Ternary vector tags

Within the first choice, one can consider to enlarge the structure of the signature
form and make signature vectors bearing three signs instead of two:{−1,0,+1}. In
this way one must accept the rule, consisting in the fact that, the presence of a zero
as a signature component will produce a zero element at the final vector in the same
position. Also this feature may indicate that in the semispace originating vector the
value of the corresponding component could be arbitrarily adopted. The problem will
consist here in the fact that signatures will be made oftrits instead of bits, and this could
be a practical nuisance in present time binary driven computers4. Also, the number of
signature elements will be no longer 2N , but will be increased up to 3N .

2.5. Quaternary vector tags

The second construction choice will produce a binary tagged set formalism but
associated to a degenerate pattern. In this case, the signature tags shall be accompanied
by another tag, which for each vector can be made over the{0,1} set, and which could

4 However, this ternary possibility of organizing computation has been contemplated by Knuth [14] several
years ago.
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be called thenullity tag set. The final tags, leading to the total vector space, including
vectors with null elements, will be made by the Cartesian product of twoN-dimensional
binary strings, in the following way:

�= {σ | σ = {sI } ∧ sI ∈ {−1,+1}},
N= {ν | ν = {nI } ∧ nI ∈ {0,1}},
�=� × N = {θ | θ = (σ, ν): σ ∈ � ∧ ν ∈ N

}
,

V (R)= V (R+)×�.
An equivalent, but more practical result from the computational point of view, can

be obtained by using the inward matrix product involving elements of the signature tag
set,�, the nullity tag set, N, and the original vector semispace,V (R+). In this built in
picture, the number of distinct tag set possible classes will increase up to: 4N , or 22N .
The interesting situation to note is that the tag set:� × N, can be visualized as the
Cartesian product of the vertices of twoN-dimensional hypercubes.

In addition, some situations will appear to be degenerate in this signature-nullity
case, as a null component could possess two signs in this tag set structure. This has
been previously noticed, when matrix signatures were studied for the first time [11] and
discussed with detail. In this previous work, the vector zero, the vector space additive
neutral element, was considered as an element potentially associated to the existing 2N

signature tag classes. However, in case that such degenerate description appears to be
poor or inelegant to the reader, there is always present the ternary picture as a possible
alternative non-degenerate solution, which can be also easily implemented by means of
inward matrix products.

In any case, the most interesting consequence of this discussion can be resumed
considering the fact that vector semispaces are the crucial elements in order to construct
vector spaces by means of two sets made of vectors of binary origin: matrix signature
and nullity.

3. Normed vector semispaces: Minkowski norm

3.1. Minkowski norm

After this previous discussion intended to make evident the basic nature of vec-
tor semispaces, it is time to start a discussion on the natural semispace metric features.
A natural norm can be easily adopted in semispaces, and it seems that the most imme-
diate rule at hand for such kind of a task becomes aMinkowski norm. Indeed, being
vector semispace elements positive definite, a sum of their components within matrix
semispaces, or the integral of the function, when dealing with infinite dimensional prob-
ability density semispaces, will produce a positive real number in any case.
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As an example of such Minkowski norm definition, let us choose a matrix semi-
space of dimension(m×n): M(m×n)(R+), supposing in addition that the basic construc-
tion algorithm holds:

∀A ∈ M(m×n)
(
R+
)→ A = {aij} ∧ ∀i, j : aij ∈ R+.

3.2. Matrix summation symbols

Then, a Minkowski norm in such a semispace can be simply symbolized by〈A〉
and computed by means of the algorithm:

〈A〉 =
∑
i

∑
j

aij ∈ R+.

The matrix elements summation symbol〈A〉 acting on arbitrary vectors or ma-
trices, has been defined and employed some years ago [15,16] to ease the mathematical
notation, as well as in order to define a mathematical symbol set, able to have an immedi-
ate translation into a high level programming language like Fortran 95, see, for example,
[17]5. The summation symbol can be also associated to a linear operator, transforming
vector semispace elements into scalars.

Also, as another example of Minkowski norm, it is worthwhile to consider the
domain of Hilbert semispaces,H(R+), where quantum density functions,ρ(r), can be
considered as their elements, that is:ρ(r) ∈ H(R+). There, in the present context, the
Minkowski norm is immediately defined as the integral over the appropriate domain of
a given function:

〈
ρ(r)

〉 = ∫
D

ρ(r)dr ∈ R+.

The real positive definite result is a consequence of the real positive definite nature
over the domainD, associated by construction to quantum density functions in partic-
ular. The same definition can be applied to any set of continuous statistical probability
density functions.

4. Shell structure in vector semispaces

4.1. α-shells

An interesting albeit immediate application of Minkowski norms can be employed
to classify vector semispaces in terms of shells. Anα-shell, S(α), is defined as a closed

5 In Fortran 90 and 95 compilers, there is present an intrinsic function, which can be employed to sum up all
the elements of a matrix. Such compiler facility is called within the code by the function symbol written
as: SUM([Argument]), with [Argument] being any previously defined integer, real or complexarray name.
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subset of a vector semispace, whose elements possess the same Minkowski normα, that
is:

S(α) ⊂ V (R+)→ ∀x ∈ S(α): 〈x〉 = α.
From all the possible shells theunit shell, S(1), is the most representative of these

elements belonging to a vector semispace, as it is straightforward to demonstrate that
from the elements of the unit shell anyα-shell element can be constructed, or:

∀a ∈ S(α)→ ∃x ∈ S(1): a = αx,

and conversely:

∀x ∈ S(1)→ ∃a ∈ S(α): x = α−1a.

4.2. Homotheties and convex sets

Thus, anyα-shell belonging to a given vector semispace is nothing else but aho-
mothety of the unit shell. As it is so, and because of the possible primordial role that
semispaces can take in order to construct vector spaces, as discussed above, it can be
immediately deduced that the unit shell, being the core to construct any other shell in
semispaces, it can be also considered the ultimate core to generate any vector space.

Moreover, theα-shells in vector semispaces areconvex sets, see, for example, [18].
In order to see this property fulfilled for any arbitraryα-shell, it is worthwhile to define
aconvex condition symbol [5] over a set of appropriate scalars. By the symbolK({wI }),
associated to a known set of scalars{wI }, it will be understood the pair of features:

K
({wI }) =

[
∀I : wI ∈ R+ ∧

∑
I

wI = 1

]
.

Thus, knowing an arbitrary set of vectors belonging to a givenα-shell{xI } ∈ S(α)
and a convex condition symbol over a known scalar setK({wI }), then the convex linear
combination

z =
∑
I

wIxI ,

belongs to the sameα-shell as the generating vectors:

〈z〉 =
∑
I

wI 〈xI 〉 = α
∑
I

wI = α→ z ∈ S(α).

4.3. Semispace partition and equivalence classes

This property indicates that any vector semispace can be considered as the union
of all of its shells:

VN
(
R+
) = ⋃

∀α∈R+
S(α).
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Still more interesting is the property consisting into that semispace shells are dis-
joint sets, that is:

∀S(α), S(β) ⊂ VN
(
R+
)
: S(α) ∩ S(β) = ∅.

This allows saying semispacesare partitioned by the α-shell structure. In con-
sequence, theα-shells themselves can be consideredequivalence classes of the semi-
space [19].

4.4. Shell direct sums

A shell sum corresponds to another shell, with their elements possessing a Minkow-
ski norm, which is the sum of those associated to the involved shell norm values, that is:

S(α)+ S(β) = �→ � ≡ S(α + β).
To prove this, it is just needed to define the shell sum in the usual way:

� = {s | s = a + b: a ∈ S(α) ∧ b ∈ S(β)},
then the elements of the shell sum possess the property:

s ∈ �→ s = a + b→ 〈s〉 = 〈a + b〉 = 〈a〉 + 〈b〉 = α + β
⇒ � = S(α + β).

Moreover, being the shells disjoint sets as commented above, the shell sum can be
written as thedirect sum of two or more shells, that is:

S(α)⊕ S(β) = S(α + β).

5. Scalar products in vector semispaces

5.1. Minkowski scalar products

In the same fashion as Minkowski norms were adopted as a natural way to choose
a norm in semispaces, it seems that there could exist as well a natural way to define
scalar products in vector semispaces. This choice has to be coherently structured in
such a manner as to match the previously chosen Minkowski norms. This prospect could
be initiated by means of the following symbol:

∀x, y ∈ V (R+): 〈xy〉 ∈ R+,

which will be attached the following algorithm:

〈xy〉 =
∑
i

(xiyi)
1/2.

To stress the parent norm structure, the same symbol as in the Minkowski norm
has been assumed, however two or, as it will be studied later on, more vectors are writ-
ten within the symbol without separation signs added. This scalar product symbol has
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been also chosen in this way in order to distinguish it from other possibilities already
discussed [12,18] and, of course, from theEuclidean scalar product.

In this manner, it is immediate to see that the property below holds, connecting
the scalar product, as defined in the algorithm above, with the previously described
Minkowski norm:

〈xx〉 =
∑
i

(
x2
i

)1/2 =∑
i

xi = 〈x〉.

Such coherency characteristic found in this simple manner, tells us it is already
time, that such scalar product can be named asroot, for short, orMinkowski scalar
product.

5.2. Inward matrix product structure and Minkowski scalar product of two vectors

The definition provided above of the root scalar product can be also interpreted in
terms of an inward matrix product6, just one must take into account the definition of
inward product:

x ∗ y = {xiyi},
which shall be associated to the inward square root form:

x[1/2] = {x1/2
i

}
.

It is obvious that, then one can write the equality:

〈xy〉 = 〈x[1/2] ∗ y[1/2]
〉
,

where the second bracket has to be taken as a matrix summation symbol.

5.3. Minkowski scalar product main properties

Due to the nature of vector semispaces, it is interesting to simplify the root scalar
product, taking into account the shell structure of the involved vectors:

x(α) ∈ S(α) ∧ y(β) ∈ S(β)→ 〈
x(α)y(β)

〉 = (αβ)1/2〈x(1)y(1)〉,
where superscripts have been used to stress the association of each vector to a given
shell. Thus, this result implies that any root scalar product within a vector semispace
can be related to the root scalar product of the unit shell associated homothetic vectors,
appropriately scaled by the geometric mean of the Minkowski norms of both vectors.

This kind of root scalar product produces a symmetric metric with positive definite
elements on it, as the following property

〈xy〉 = 〈yx〉 ∧ 〈xy〉 ∈ R+,

6 As defined in appendix A.
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holds for any couple of vectors, according to the root scalar product above defined.
However, nothing assures that, in any case, the metric is positive definite, adopting for
the metric matrix the usual sense for this property, associated toEuclidean vector spaces.
In order to discuss this issue, even if it has to be from a simple point of view, the main
arguments shall be postponed until some other properties of root scalar product have
been studied.

The rest of main properties of root scalar products have to be observed now, as it is
not so obvious whether they are fulfilled in the same way as scalar products in Euclidean
spaces. For example, multiplication by a scalar of one of the involved vectors in the
root scalar product appears to possess similar properties as the usual Euclidean scalar
product:

λ ∈ R+:
〈
(λx)y

〉 = λ1/2〈xy〉.
The next property to be handled is related to root scalar product and addition. The

adequate handling of this part is most interesting in order to make root products as similar
as possible to the Euclidean counterpart.

5.4. Distributive law and root scalar products involving linear combinations

A distributive law with respect vector addition has to be sought through the defini-
tion of inward matrix product subjacent structure of root scalar products. The algorithm
definition of root scalar product must be adapted to vector sum, and the straightforward
way to define the interaction of sum and product is:〈

(x+ y)z
〉 =∑

i

(
x

1/2
i + y1/2

i

)
z

1/2
i = 〈xz〉 + 〈yz〉.

At the same time, in order to obtain a coherent reduction to the Minkowski norm,
the product of two vector sums has to be structured in form of aHadamard product (see
appendix A), that is, just dropping the cross terms while keeping the diagonal ones:〈

(x+ y)(t+ u)
〉 = 〈xt〉 + 〈yu〉.

With these definitions the Minkowski norm of a sum is preserved as can be easily
deduced: 〈

(x+ y)(x+ y)
〉 = 〈xx〉 + 〈yy〉 = 〈x〉 + 〈y〉 = 〈x+ y〉,

and the product of two linear combinations,restricted to possess an equal number of
terms, can be handled in the following way, using again the Hadamard diagonal formal-
ism:

x =
P∑
i

αiai ∧ y =
P∑
i

βibi:

〈xy〉 =
P∑
i

(αiβi)
1/2〈aibi〉 =

P∑
i

[
(αiβi)

1/2
∑
k

(akibki)
1/2

]
.
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A final remark should be given, before proceed with the study of the possibilities
of root scalar products in semispaces. One must insist that Hadamard products were
originally defined within infinite sums pairs of elements [20]. When described, as in the
present case, within sums possessing a finite number of terms, then the sum upper limit
shall be the same in both factors. Otherwise the product is not feasible.

6. Angles subtended by two vectors

Root scalar products and Minkowski norms can be joined together in order to con-
struct, as in the classical Euclidean way, the cosine of the angle subtended by two semi-
space vectors. To grasp such a goal, it is only needed the following practical definition,
based on Minkowski norms and root scalar products as defined beforehand:

∀x, y ∈ V (R+) ∧ x ∈ S(α), y ∈ S(β):
cos(φ) = 〈xy〉

(〈x〉〈y〉)1/2 = (αβ)
−1/2〈xy〉 = 〈x(1)y(1)〉.

Such a classical definition, demonstrates again the coherent result that, under the
present semispace description, the angle subtended by a pair of semispace vectors, even
if they belong to different shells, it can be established within the unit shell by the root
scalar product of the unit shell vectors. In order to stress the different nature of the cosine
defined here, from the usual Euclidean algorithm, the present cosine computation will
be namedroot or Minkowski cosine.

7. Minkowski metric properties

7.1. Minkowski product fundamental property involving unit shell vectors

There is still a point to be demonstrated, which can be postulated in the following
way:

∀x, y ∈ S(1)→ 〈xy〉 � 1.

A straightforward demonstration of the previous inequality can be put in the fol-
lowing terms. Given two arbitrary vectors of the unit shell:x, y ∈ S(1), then one can
suppose that both unit shell elements are constructed by means of the rules7: x = {u2

I }
andy = {ν2

I }, just to fulfill: 〈x〉 = 〈y〉 = 1. Using generating symbols it can be simply
written: R(u→ x) ∧ R(v→ y), as well as the unit shell association of both generated
vectors can be symbolized by the convex conditions:K(x) ∧K(y).
7 Such procedure has been formally described [8,9,18] with the use of agenerating symbol: R(u→ x) =
{x = u ∗ u}, where the inward matrix product is explicitly written. This kind of symbolic form can
be easily extended in order to connect Hilbert spaces and semispaces, one just has to remember the
construction of density functions with squared modules of wave functions.
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The sets{uI } and{νI } can always be found, being the vector components in semi-
spaces real positive definite scalars. This also becomes the same as to consider that the
generating vectors:u = {uI } andv = {νI }, are normalized in the Euclidean space sense:

uT u = vT v = 1.

This can be always stated because, for example,

uT u =
∑
I

u2
I =

∑
I

xI = 〈x〉 = 1,

can be directly written and an equivalent relationship holds relating the components of
the other chosen vectorsy andv.

From here, recalling the well-known Schwartz inequality in Euclidean spaces (see,
for example, [21]): (

uT v
)2 � (uTu

)(
vT v

)
,

which, in this particular case where the involved vectors are normalized, permits to fi-
nally write:

uT v � 1.

As a consequence, the scalar product used here in this work can be written as:

〈xy〉 =
∑
I

(xI yI )
1/2 =

∑
I

uI νI = uT v � 1.

Thus, the root scalar product obtained with a pair of arbitrary vectors of the unit
shell is always less or equal to one, and consequently behaves as a cosine, inducing the
same behaviour into the previously defined root cosine.

7.2. A property of the elements of the unit shell vectors

It is interesting to know a general form of this cosine definition based on root
scalar products, when one of the vectors involved into the root scalar product is the
unity vector: 1 = {1I = 1}, already described. Such a vector in anyN-dimensional
semispace, in order that it is forced to belong to the unit shell, has to be written with
a normalisation factor:N−1. Then, choosing any unit shell semispace vector, defined
for instance as:

z = {θI } ∈ S(1)→ 〈z〉 =
∑
I

θI = 1,

it produces the following root cosine, when confronted with the unity vector:

cos(φ) = 〈z(N−11
)〉 = N−1/2

∑
I

θ
1/2
I .

According to the previous discussion this particular root cosine expression, as ob-
tained above, has to be less or equal than one. From here, one can deduce that the unit
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shell vector components in anyN-dimensional semispace will fulfill in any case the
relationship ∑

I

θ
1/2
I � N1/2.

The unity vector used twice within this argument will allow the equality to hold.

7.3. Positive definite structure of Minkowski metric matrices involving two unit shell
vectors

The property〈xy〉 � 1, associated to unit shell vectors and demonstrated above,
can be used to build up a particular proof of the positive definiteness of metric matri-
ces involving two vectors ofS(1). Suppose known two linearly independent unit shell
vectorsx, y ∈ S(1), the root metric matrix associated to both vectors can be written as:(

1 〈xy〉
〈xy〉 1

)
=
(

1 p

p 1

)
,

the characteristic polynomial, and it roots, of such metric matrix is simply:

Det

[
1− λ p

p 1− λ

]
= (1− λ)2− p2 = 0 ⇒ λ = 1± p.

This proves that being the root scalar product:p < 1, because the vectors have been
chosen linearly independent, then, the two possible eigenvalues will bear the property:
λ > 0. Thus, the root metric matrix associated to a couple of linearly independent unit
shell vectors is positive definite.

7.4. Linear independence of unit shell vectors

Here a remark must be proposed, concerning the unit shell elements and, by exten-
sion, implying the elements of any shell. By construction, the vector pairs of a given shell
are linearly independent. This can be proved by using the fact that Minkowski norms of
all shell components are equal. Then, there is no scalarλ �= 1 for which two vectors,
say:x, y ∈ S(1), fulfill x = λy. This is so, because:〈x〉 = 〈λy〉 = λ〈y〉 → 1= λ.

8. Positive definite nature of root metric matrices

In order to get a hint about the positive definiteness of root metric matrices of
arbitrary dimension, one can also employ the argument consisting in the following rea-
soning. Suppose a set ofM linearly independent vectors belonging to some vector space
is known:

Z = {z1, z2, . . . , zM} ⊂ V (R),
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such that, their inward product generates another set:

X = {x1, x2, . . . , xM} → ∀I : xI = zI ∗ zI = z[2]I .

Euclidean normalization of the setZ is equivalent to Minkowski normalization of
the setX, as can be easily proved:

∀I : 1= 〈zI | zI 〉 =
∑
P

z2
PI =

∑
P

xPI = 〈xI 〉 → xI ∈ S(1),

so, using this construction, the setX ⊆ S(1). As the setZ has been chosen linearly
independent, then the Gram matrix of the setZ,G = {gIJ = 〈zI | zJ 〉}, is positive
definite: G > 0. However, the matrix constructed with the root scalar products of the
parent setX, can be manipulated in such a way that:

R = {rIJ = 〈xIxJ 〉}→ ∀I, J : rIJ = 〈xIxJ 〉 =
∑
P

(xPIxPJ)
1/2

=
∑
P

(
z2

PIz
2
PJ

)1/2 =∑
P

zPIzPJ = 〈zI | zJ 〉 = gIJ

⇒ R = G ∧ R > 0.

Then, as a unit shell subsetX can always supposed to be generated by a set like
the setZ, one arrives to the conclusion that a root metric matrix over a set of unit shell
elements will be positive definite, or at least that, when the generating vectors are not
linearly independent, it will be nonnegative definite.

9. Root distances in vector semispaces

9.1. Root distances in semispaces

From the previous definition of the root scalar product, it is almost compulsive that
an associatedroot or Minkowski distance definition could be also proposed. This can
be done again by inspection of the classical Euclidean definition, while substituting the
usual distance elements by the appropriate Minkowski ones. After scaling by two, the
following rule can be used, despite the need of using a difference in a strictly positive
definite set:

d(x, y) = 1

2

(〈x〉 + 〈y〉) − 〈xy〉.
Now supposing thatx ∈ S(α)∧y ∈ S(β), it is easily deduced the algorithm, which takes
into account the shell structure in semispaces:

d(x, y) = 1

2
(α + β)− (αβ)1/2〈x(1)y(1)〉,
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and, using the definition of the root cosine of the angle subtended by both vectors, the
root distance can be also written as

d(x, y) = 1

2
(α + β)− (αβ)1/2 cos(φ).

Proving that, under the proposed definition, root distances in vector semispaces can
be computed over the unit shell with thearithmetic mean shell value as origin and the
geometrical mean shell value as scale factor.

9.2. Root distance properties

Also, the root distance symmetry obviously holds, that is:

d
(
x(α), y(β)

) = d(y(α), x(β)).
The following property must be also noted now, when both vectors are equal:

d(x, x) = α(1− 〈x(1)x(1)〉) = α(1− 〈x(1)〉) = α0= 0,

as well as it must be also noted the interesting result, which appears when two homo-
thetic vectors, related to the same unit shell vector, are considered:

d
(
x(α), x(β)

) = 1

2
(α + β)− (αβ)1/2〈x(1)x(1)〉 = 1

2
(α + β)− (αβ)1/2.

This result may be taken as a constant, connecting anyα-shell with another
β-shell. One can, then, speak of ashell root distance, when referring to this quantity.
As arithmetic means are always greater than or equal to geometric means, then this sta-
tistical property assures the positive definite nature of shell root distances.

The same root distance positive definiteness property holds as well in the general
algorithm involving any pair of vectors, as the root scalar product or the equivalent root
cosine within the unit shell are less than one. Then one can write, in general, that the
positive definiteness of root distances is fulfilled:

d
(
x(α), y(β)

) ∈ R+.

There, is no proof by which thetriangle inequality (see, for example, [21]) gener-
ally holds within the root distance description. It can be easily found a counterexample,
involving for instance the shell root distances of three different collinear homothetic vec-
tors, which proves that the root distances in this casedo not fulfill the triangle inequality.
Thus, perhaps one can speak of anultrametric definition in the present root distance
case and in further generalizations, employing this word to represent the distance ax-
ioms when void of the triangle inequality.

10. Generalized root scalar products and distances

It is interesting to study, besides the highlights and limitations of both semispaces
and their natural root operations, if such algorithmic definitions can be associated to
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more than a vector couple. Such aim is unusual in Euclidean spaces, although some
attempts have been done recently [18] within other ideas, just to provide with a prospect
of open computational horizons the field of QS descriptors.

As has been previously described, various QS measures involving the density tags
of several quantum objects can be computed [9,10,18]. One of such possible defini-
tions is the so-calledtriple density QS measures, where three quantum object density
functions are involved in the measure computation. Such measures involving multiple
quantum object tags are not unique, due to possible alternative definitions of the den-
sity functions [22,23]. Because of this lack of uniqueness, several possible forms have
been put forward, see, for example, [18], although the most straightforwardly defined
triple density measure, associated to the integral of a triple product of first order density
functions, is the one which has been employed several times [24,25].

10.1. Generalized root scalar products involving several vectors

Now, the structure of the root scalar product is such, that it can be also naturally
generalized into a form, involving an arbitrary number of vectors. In order to obtain
a general algorithm for a root scalar product, suppose known a set of vectors of some
semispace:X = {xI }(I = 1, P ) ⊂ V (R+), defined in such a way as allowing each of
them to belong to an arbitrary shell, that is:∀I : xI ∈ S(αI ) ⊂ V (R+). A root scalar
product of order P can be defined over the setX by means of the algorithm:

〈x1x2 · · · xP 〉 =
∑
I

(xI1xI2 · · · xIP )1/P =
∑
I

(
P∏
J=1

xIJ

)1/P

.

Taking into account the above definition, the already discussed root scalar product,
corresponds to a second order algorithm. In any case and up to any order, the root scalar
product reverts to the Minkowski norm, when the involved vectors are the same. Also,
it is trivial to see that the root scalar product bears permutational symmetry, and thus is
independent of the order of the factors.

Besides, the following property:

〈x1x2 · · · xP 〉 = (α1α2 · · · αP )1/P
∑
I

(
x
(1)
I1 x

(1)
I2 · · · x(1)IP

)1/P
= (α1α2 · · · αP )1/P

〈
x(1)1 x(1)2 · · · x(1)P

〉
,

is also trivially demonstrated. Consequently the root scalar product can be referred to the
homothetic unit shell vectors, while scaled by the geometric mean of their shell values.

10.2. Generalized root distances involving several vectors

It is straightforward to construct a generalized root distance. Owing to the previous
discussion and the second order formalism discussed above, there can be written, theroot
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distance of order P , as:

d(x1x2 · · · xP ) = 1

P

(
P∑
I

αI

)
− (α1α2 · · · αP )1/P

〈
x(1)1 x(1)2 · · · x(1)P

〉
.

Thus, producing a computational structure with the same properties as the second
order root distance previously discussed.

10.3. Proving the fundamental property of generalized scalar products involving unit
shell elements

Moreover, if the following conjecture can be admitted to hold for any number of
semispace unit shell vectors: 〈

x(1)1 x(1)2 · · · x(1)P
〉
� 1,

then, not only this will ensure the positive definiteness associated to the root distances of
any order, but also will permit to define a kind of generalized root cosines of thepseudo-
angle subtended byP semispace vectors. To illustrate this affirmation one could write,
mimicking the second order result:

cos(5P ) =
〈
x(1)1 x(1)2 · · · x(1)P

〉
.

In order to demonstrate the above stated conjecture, consisting in that the root
scalar product of an arbitrary number of unit shell vectors is less or equal to one, suppose
known a set of unit shell vectors with the superscript dropped to simplify notation:X =
{xI } ⊂ S(1). Then, the following equalities will be associated to the elements of the
setX: ∀xI ∈ X: 〈xI 〉 = 1. Keeping this in mind, one can recall the definition of the
root product involving the elements ofX, supposedly associated with a cardinalityP :

〈x1x2 · · · xP 〉 =
∑
j

(xj1xj2 · · · xjP)
1/2 <

∑
j

[
1

P
(xj1+ xj2 + · · · + xjP)

]

= 1

P

[∑
I

∑
j

xjI

]
= 1

P

∑
I

〈xI 〉 = 1

P
P = 1.

Then, in this way the less than sign part of the conjecture is simply proved. It
just has been needed the already employed argument, consisting into the well-known
property, making geometric means less than arithmetic means, and this property, hold-
ing for each term in the sum, produces the global result. Such property involving the
arithmetic–geometric means has an exception when all the terms are the same. In this
situation equality will hold between both means, even if this is not the most interesting
case. It is obvious that under this circumstance the property:

∀x ∈ S(1): 〈xx · · · x〉 =
∑
j

(xj xj · · · xj )1/P =
∑
j

(
xPj
)1/P =∑

j

xj = 〈x〉 = 1
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will be found. Then, it has been proved that in any situation the root scalar product,
involving an arbitrary number of unit shell vectors, will always be less than or equal to
one.

11. Inward matrix structure of generalized root scalar products

It has been proved that the cornerstone of semispace metric can be associated to
the root scalar product of an arbitrary number of vectors, belonging to arbitrary shells,
which can always be associated to the product of the homothetic unit shell parent vec-
tors. This is so because it has been proved that, when all vectors in the root scalar product
are the same, then the Minkowski norm is recuperated as the result. So, the scalar prod-
uct is involved in the same manner in order to describe root cosines of the subtended
pseudo-angle and root distances as well. Keeping these considerations in mind, then it
is straightforward to write in the same way as it was set for the second order root scalar
product:

X = {xI } (I = 1, P ) ⊂ V (R+)
→ 〈x1x2 · · · xP 〉 =

∑
I

(xI1xI2 · · · xIP)
1/P ≡ 〈[x1 ∗ x2 ∗ · · · ∗ xP ][1/P ]

〉
,

where the last expression present within the matrix elements sum, corresponds to the
inward matrix power of the inward matrix product involving the vectors of the setX,
and is defined accordingly as

[x1 ∗ x2 · · · ∗ xP ][1/P ] =
{
(xI1xI2 · · · xIP )1/P

}
.

12. Hilbert semispaces and root products

All the definitions, algorithms and properties of Minkowski operations on vector
semispaces can be translated to the spaces of density functions orHilbert semispaces.
An example of this possibility has been already described when Minkowski norms were
defined in semispaces. Another application has been based on the possibility to use unit
shell functions to construct, by means of convex linear combinations, other unit shell
density functions.

12.1. Atomic shell approximation functions

The so-calledatomic shell approximation (ASA) [18,26] has to be considered
a practical consequence of these theoretical ideas. ASA technique constructs quite accu-
rate approximate atomic density functions by using a convex restricted fitting of a known
set,� , made of spherical density functions, to atomicab initio densities [27]. This can
be resumed by the statement:
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K
({wI }) ∧� = {sI (r)} ⊆ S(1) ⊆ H (R+)
→ ρ(r) =

∑
I

wI sI (r) ∈ S(1).

The ASA functions not only can be applied to QS measures calculation, see for
a recent example on antimalarial QSAR reference [28], but appeared to be interesting
for initial HF procedures in molecular structures with heavy elements [29], among other
applications [30–32].

12.2. Minkowski scalar products between ASA functions

Minkowski scalar products may be employed within ASA approximation, but may
produce difficult integrals when applied over exactab initio density functions. Coming
back to the ASA possibility in order to describe feasible computational structures, the
appropriate root product involving a pair of ASA density functions may be defined as:

〈
ρA(r)ρB(r)

〉 = ∫ (ρA(r)ρB(r))[1/2] dr =
∫ (
ρA(r)[1/2] ∗ ρB(r)[1/2]

)
dr,

defining the square root of both ASA density functions as an inward power (see appen-
dix A):

ρ(r) =
∑
I

wI sI (r)→ ρ(r)[1/2] =
∑
I

w
1/2
I s

1/2
I (r),

while the inward matrix product, involving both density functions can be expressed as
a Hadamard product (see appendix A). Then one can finally write:

〈
ρA(r)ρB(r)

〉 =∑
I

w
1/2
AI w

1/2
BI

∫
s

1/2
AI (r)s

1/2
BI (r)dr.

Such an algorithm, although unusual has been described to coherently describe
the Minkowski norm, in the same way as the related property is fulfilled in finite-
dimensional vector spaces: 〈

ρA(r)ρA(r)
〉 = 〈ρA(r)〉.

From this definition cosines and distances involving twoASA density functions can
be straightforwardly computed. In the same way, products of higher order than two can
be so easily defined, that there is no need of supplementary description.

12.3. ASA pseudo-wave functions

The Hadamard square root of an ASA density function:

ρ(r)[1/2] =
∑
I

w
1/2
I s

1/2
I (r) = ψ(r),
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may be employed, in the same way as semispace vectors have been used, to construct any
vector space element. However, in the Hilbert semispace case one is facing continuous
vectors, so as thepseudo-wave function, ψ(r), is positive definite everywhere in the
associated domain, as the original ASA density function is, the function signature and
nullity may be structured as phase function, so one can construct in general a Hilbert
space function as:

9(r) = ψ(r)eiα ∈ H(C).
Then, it is quite interesting to note how the phase function acts in this case as

a signature-nullity tag of the Hilbert semispace pseudo-wave function. The most sim-
ilar finite-dimensional tag to the phase functions tags to be used in the pseudo-wave
functions may be the ternary tags involving sign and nullity already discussed above.

13. Conclusions

Semispace structure is not only helpful in order to describe mathematical object
entities related to quantum mechanics, quantum similarity and statistical probability dis-
tributions, but can be further structured with an original and rich collection of particular
operative tools. These operations are also related to the usual and well-known mathe-
matical manipulations and structure of classical Euclidean vector spaces, but in some
way provide semispace structures with a great computational and generalization powers.

Minkowski norms, scalar products, cosines and distances, involving an arbitrary
number of vectors, may indeed become a source of interesting parameters, which can
connect positive definite molecular descriptors, as these provided by quantum similarity
measures, in new unsuspected ways.

But over all these concluding considerations, the semispace root metric, as defined
in this work, enhances the role of the shell structure of semispaces with the important
result, consisting in that the unit shell acquires a distinctive relevant role. In this way
the unit shell appears to be the core of the generation of all the elements of any vector
space, by means of homothetic operations and inward matrix products with the adequate
matrix signature and nullity.
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Appendix A. Inward matrix product

Inward matrix product definition

An essential piece of the toolbox related with QS theory is constituted by the matrix
operation so-calledinward matrix product (IMP) [11–13,18], which has been based on
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the structure of the so-calledHadamard product [20]8. Such an operation is an internal
composition law, which can be defined within a matrix (or hypermatrix) vector space
M(m×n)(K) of arbitrary dimension(m×n) and defined over a fieldK, producing a matrix
whose elements are products made, in turn, by the elements of the matrices appearing in
the IMP itself, according to the straightforward algorithm:

∀A = {aij},B = {bij} ∈ M(K):
P = A ∗ B→ P = {pij} ∈ M(K) ∧ pij = aijbij ∀i, j.

Defined in such a way, IMP and classical matrix products coincide in the subspaces
made by diagonal matrices as elements. From now on, IMP and Hadamard products will
be used as synonyms of an operation, which can be applied not only to matrix spaces but
over a wide variety of mathematical objects. The main characteristic of such a product
is the result producing another mathematical object of the same kind as the involved
objects in the operation.

Inward matrix product properties

IMP is a feature included in high-level computer languages such that Fortran 95
[17], where it has been implemented in an easy manner, so the practical use of the
following IMP properties and characteristics can be immediate.

IMP is commutative:

A ∗ B = B ∗A,

associative:

A ∗ (B ∗ C) = (A ∗ B) ∗C = A ∗ B ∗ C,

and distributive with respect to the matrix sum:

A ∗ (B+ C) = A ∗ B+ A ∗C.

Furthermore, it has a multiplicative neutral element, theunity matrix, which cus-
tomarily has been represented by a bold real unit symbol:1 = {1ij = 1}, that is:

A ∗ 1 = 1 ∗A = A.

8 TheHadamard product is related to the multiplication result of two sums and constructed by the sum of
the resultant diagonal products only. In this way, the Hadamard (or inward) product of two sums can be
specified by the following algorithm:

(∑
I

aI

)(∑
I

bI

)
=
∑
I

aI bI .
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IMP powers, functions and inverses

IMP powers are defined as powers over the involved matrix elements, and are writ-
ten in the usual way, but between square brackets. As an example can be chosen the
following algorithm:

A = {aij} ∈ M ∧ P ∈ R: A[P ] = {aPij } ∈ M.
The same can be said of IMPfunctions, which can be simply defined as:

f [A] = {f (aij)
}
.

IMP inverses are defined accordingly with the algorithm:

A[−1] = {a−1
ij

}
,

fulfilling:

A ∗ A[−1] = A[−1] ∗ A = 1,

obviously demanding the definition of IMPnon-singular matrices, which can be taken
as these which possess the unity matrix as nullity tag. But even this restriction can be
relaxed somehow [33].
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